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Truth-Conditional Semantics

“the meaning of a sentence is the method of its
verification... there is some uniform means of deriving
all the other features of the use of any sentence from

this one feature” — Dummett (1976)
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Interim Summary

■ Predicates as functions:
entity representation 7→ probability of truth

■ Pixie: entity representation
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Probabilistic Situation Semantics
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Probabilistic Situation Semantics

■ World model: P (x,y, z)

■ Lexical truth-conditional model: P (tr,X |x)

■ Aim: learn these at scale!
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Probabilistic Truth Conditions at Scale

■ Learn from:

■ Labelled images (Liu & Emerson, 2022)

■ Parsed text (Lo et al., 2023)

■ WordNet (Cheng et al., 2023)
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Visual Genome (Krishna et al., 2017)

“couple cutting cake”

Y ZX
ARG2ARG1

Tp,X Tq,Y Tr,Z
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Learning from Visual Genome

1. Data

: 2.3m of form

�

, , ,couple,cut,cake

�

2. Objective

: P

�

, , ,couple,cut,cake
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3. Model

:
Y ZX

ARG2ARG1

Tp,X Tq,Y Tr,Z

4. Training

: gradient descent
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Probabilistic Situation Semantics
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Probabilistic Situation Semantics

Y ZX

∈ X

ARG2ARG1

Tr,X Tr,Y Tr,Z
∈{⊥,⊤} V

RX RY RZ

∈ V

y

pepper(x)
vegetable(x)

animal(x)
dog(x)
cat(x)

x z

dog(X) chase(Y) cat(Z)
animal(X)
chase(X)
pursue(X)

cat(X)

pursue(Y)
dog(Y)
cat(Y)

animal(Y)

animal(Z)
chase(Z)
pursue(Z)

dog(Z)
dog chase cat

ARG1 ARG2

h(X) h(Y) h(Z)

1
,s

el
f

1,ARG1
1,ARG1 −1 1

,s
el

f

1,ARG2
−1 1,ARG2 1

,s
el

f

2
,s

el
f

2,ARG1
2,ARG1 −1 2

,s
el

f

2,ARG2
−1 2,ARG2 2

,s
el

f

13



Functional Distributional Semantics
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Functional Distributional Semantics

■ World model P (x,y, z)

■ Lexical model P (tr,X |x)

■ Extended lexical model P (rX |x)∝ P (tr,X |x)

14



Functional Distributional Semantics

■ World model P (x,y, z)

■ Lexical model P (tr,X |x)

■ Extended lexical model P (rX |x)∝ P (tr,X |x)

14



Truth Conditions from Images

1. Data: 2.3m of form
�
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2. Objective: P
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3. Model:
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4. Training: gradient descent
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Truth Conditions from Text

1. Data: 36m of form
�
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Truth Conditions from Text

■ Only observe an utterance, not a situation...

■ Training objective:

■ P (u) =
∑

s

P (u | s)P (s)

■ Summing over all s is intractable!

■ Approximation: only consider likely s
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Amortised Variational Inference
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Amortised Variational Inference

■ Variational Inference: use a simple distribution to
approximate P (s |u)

■ Amortised Variational Inference: train a neural net
to approximately optimise the simple distribution

■ When applied to a latent-variable model, called a
“Variational Autoencoder” (VAE)
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Scaling Up

■ Emerson (2020) “Autoencoding Pixies”

■ Semantic graphs with two or three predicates

■ Lo et al. (2023) “Functional Distributional
Semantics at Scale”

■ Arbitrary semantic graphs

■ Inference network scales well

■ World model scales badly... remove it (!!!)
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Family of Distributions
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Family of Distributions
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Family of Distributions
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World Models at Scale

■ World model is a family of distributions

■ P(s) must sum to 1

■ Need to scale to many entities
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World Models at Scale

■ Emerson (2020): discrete vectors (RBM),
normalisation constant intractable

■ Fabiani (2022), Liu & Emerson (2022): real vectors
(Gaussian), normalisation constant scales as O(n3)

■ Lo et al. (2023): trivial world model, interactions
moved to lexical model
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Family of Distributions
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Evaluating a Model

■ Has the model learnt something useful?

■ Can it generalise?

■ Logical inference
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Logical Inference

■ Is an animal that has a tail a cat?

■ Is an animal that has a tail a computer?
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Logical Inference with Latent Entities
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Variational Inference for Logical Inference

P (tcat,X | tanimal,X, thave,Y, ttail,Z)

=
∑

x,y,z

P (tcat,X |x)P (x,y, z | tanimal,X, thave,Y, ttail,Z)

■ Exact inference is computationally intractable

■ Use (amortised) variational inference
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RELPRON Dataset (Rimell et al., 2016)

telescope device that astronomers use

telescope device that detects planets

saw device that cuts wood

philosopher person that defends rationalism

survivor person that helicopter saves

farming activity that soil supports

... ...
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Similarity in Context (GS2011)

student write name

student spell name

scholar write book

scholar spell book
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Evaluation Dataset Summary

■ Evaluation datasets for visual model

■ RELPRON: inference with relative clauses

■ GS2011: similarity in context

■ MEN, SL999: similarity (no context)

■ (All filtered for Visual Genome vocabulary)
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Results (Visual Models)

Model MEN SL999 GS2011 RELPRON

VG-count (Herbelot, 2020) .336 .224 .063 .038
VG-retrieval .420 .190 .072 .045
EVA (Herbelot, 2020) .543 .390 .068 .032

FDS (Liu & Emerson, 2022) .639 .431 .171 .117

■ Truth-conditional structure helps generalisation

36



Results (Visual Models)

Model MEN SL999 GS2011 RELPRON

VG-count (Herbelot, 2020) .336 .224 .063 .038
VG-retrieval .420 .190 .072 .045
EVA (Herbelot, 2020) .543 .390 .068 .032

FDS (Liu & Emerson, 2022) .639 .431 .171 .117

■ Truth-conditional structure helps generalisation

36



Evaluation Dataset Summary

■ Evaluation datasets for textual model

■ RELPRON: inference with relative clauses

■ GS2011, GS2012: similarity in context

■ GS2013: similarity in context (plus adjectives)
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Results (Textual Models)

Model RELPRON GS2011 GS2012 GS2013

BERT .667 .519 .608 .562
FDSAS .580 .552 .660 .601

■ Competitive with BERT, but with 10% data

■ BERT requires template tuning: consistency better
than grammaticality, punctuation crucial!
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Truth Conditions from WordNet

■ Hyponymy is straightforwardly truth-conditional:

■ f is a hyponym of g iff ∀x f (x)→ g(x)

■ With probabilistic truth conditions:

■ f is a hyponym of g iff ∀x f (x) ≤ g(x)
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Truth Conditions from WordNet

■ Assume:

■ x on the unit sphere, |x| = 1

■ f and g logistic regression classifiers,
f (x) = σ(af .x+ bf )
g(x) = σ(ag.x+ bg)

■ Then the following are equivalent:

■ ∀x f (x) ≤ g(x)
■ bg − bf − |ag − af | ≥ 0
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Results (WordNet Models)

Model Link Pr.

TransE (Bordes et al., 2013) .345
DistMult (Yang et al., 2015) .425
rGAT (Chen et al., 2021) .500

FuncE (Cheng et al., 2023) .259

Sim. Ana. POS NER

.486 .320 .765 .492

.288 .116 .672 .484

.289 .132 .716 .307

.512 .353 .772 .545
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Summary

■ Truth conditions feasible at scale

■ Approximations required

■ Improves generalisation
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Crucial Approximations & Simplifications

■ Images (Liu and Emerson): variational inference,
no latent variables

■ Text (Lo et al.): amortised variational inference,
simple world model

■ Ontology (Cheng et al.): simple truth-conditional
model, simple world model

■ Pragmatics (RSA) needs further approximation...
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Bitter Lesson

■ At scale, truth-conditional semantics is intractable

■ An intractable model is cognitively implausible

■ Unavoidable “approximations” must be seen as
part of the theory...
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Truth-Conditional Semantics

“the meaning of a sentence is the method of its
verification... there is some uniform means of deriving
all the other features of the use of any sentence from

this one feature” — Dummett (1976)
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Beyond Truth Conditions

■ Goal: a theory of language understanding that is
tractable at scale

■ Idea: some processes of language understanding
are not reducible to truth conditions, but instead
mutual to truth conditions
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Beyond Truth Conditions

■ Truth-conditional model:

■ P (tu | s)

■ Inference model:

■ P (s | tu)

■ Bayesian inference is intractable:

■ P (s | tu) =
P (tu | s)P (s)
∑

s′ P (tu | s′)P (s′)
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Amortised Variational Inference Revisited

■ VAE objective: inference network approximates
Bayesian inference for generative model

■ Zhao et al. (2019) alternative view:

■ VAE objective minimises KL-divergence between

■ generative model Pθ (z)Pθ (x | z)
■ inference model Pϕ (x)Pϕ (z |x)
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Amortised Variational Inference Revisited

■ Truth-conditional model P (tu | s)

■ World-inferential model P (s | tu)

■ Treat them as mutual:

■ Neither is primary

■ Each approximates the other

■ No coherent joint P (s, tu)
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Masked Language Modelling Revisited

■ Masked language model predictions:

■ P
�

wi

�

�w1, . . . ,wi−1,wi+1, . . . ,wn

�

■ Can be seen as mutual:

■ No wi is primary

■ No coherent joint P (w1, . . . ,wn)

■ Approximately coherent
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Mutual Models

■ Bundle of component models

■ Each component makes some conditional inference

■ Jointly trained with an objective for which a
coherent (but intractable) model would be optimal

■ Rigorous framework for modelling “incoherence”:
systematic divergence between components
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Lexical Truth-Conditional Model

Si

Tc,iTb,iTa,i Td,i Te,i

P (tr,i | si)
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World-Inferential Model

S1 S2 S3

Ta,1 Tb,2 Tc,3

P (s | tu)
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Conditional World Model

S1 S2 S3 P (si
�

�s ̸=i)
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Mutual Models

■ Component models:

■ Truth-conditional model P (tu | s)
■ World-inferential model P (s | tu)
■ Conditional world model P (si

�

�s ̸=i)

■ Trained jointly (without a coherent joint distribution!)
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Mutual Models for Cognitive Science

■ Rigorous framework for bounded rationality
(vs. Icard, 2018; Chater et al., 2020; Lieder & Griffiths, 2020)

■ Cognitive processes in different directions will
systematically diverge

■ Classification and production

■ Classification and imagination

■ Classification and generation
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Classification and Production

■ Two mutual processes:

■ Classifying instances of a concept

■ Producing instances of a concept

57



Example: Looptail g
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Example: Looptail g

■ Classified without effort

■ Produced with difficulty (if at all)
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Classification and Production

■ Aim to quantify:

■ How does divergence depend on learning?

■ How do mutual processes support each other
during learning?
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Example: Ge’ez Script for Amharic
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Classification and Production

■ Hand-drawn characters:

■ Visually complex, hard to describe

■ Physically simple to reproduce

■ Plan:

■ Observe classification and production
behaviour, under different learning conditions

■ Compare with mutual model predictions
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Classification and Imagination

■ Two mutual processes:

■ Classifying instances of a concept

■ Imagining instances of a concept

■ Methodological challenge: can’t observe imagination

■ Idea: provide some features, probe others
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Classification and Imagination

“a cup and a bowl”

Can you see the bowl?
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Classification and Imagination

■ Divergence between:

■ Classification-based Bayesian inference

■ Imagination-based inference

■ “Mode collapse” in machine learning
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Summary of Plans

■ Mutual Models

■ New framework for probabilistic modelling

■ New tools for studying human behaviour

■ Next steps:

■ Mutual models at scale

■ Experiments with human participants
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Conclusion

■ Truth conditions at scale

■ Feasible (with approximations...)

■ Truth helps generalisation

■ Beyond truth conditions

■ Reducing to truth conditions is intractable

■ Instead: mutual models
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